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ABSTRACT: Herein, we developed a copper-catalyzed O-vinylation of arylhydroxylamine using vinyliodonium salts as
vinylation reagents to generate a transient O-vinyl-N-arylhydroxylamine that rapidly undergoes a [3,3]-sigmatropic
rearrangement and subsequent cyclization/rearomatization to form a substituted indole. A wide range of highly substituted
indoles and benzoindoles can be afforded in good yields. This approach is readily scalable, and the scope and application of this
process are presented.
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The indole nucleus is one of the most ubiquitous scaffolds
because of its wide presence in a plethora of natural

products, pharmaceuticals, and agrochemicals, as well as in
materials science.1 In particular, highly substituted indoles have
been referred to as “privileged structures” because of their
capability of binding to a variety of receptors with high
affinity.2 In view of the importance and abundance of the
indole motif, it is not surprising that significant efforts have
been devoted to develop new strategies for the generation of
indole units, and numerous methods have been reported1g,3

(for example, Fischer,4 Madelung,5 Hegedus,6 Bartoli,7

Larock,3c,8 and Buchwald9 indole synthesis and so on).
However, via these methods, harsh conditions (for example,
high temperature (>100 °C), low temperature (<−40 °C)),
specific starting material availability, and low functional-group
tolerance often hamper the versatility and utility of indole
synthesis. Thus, the continuous development of alternative
approaches that may allow for the straightforward construction
of structurally diverse indoles (in particular, 3-substituted
indoles) is still a field of increasing interest.
In 1989, Bartoli and co-workers described the reaction of

ortho-substituted nitroarenes 1 with an excess (3 equiv or
more) of vinyl Grignard reagents at low temperature to
generate 7-substituted indoles 3 upon aqueous workup
conditions.7c The presumably formed intermediate 2 from
the addition of the second equivalent of Grignard reagent to
the corresponding nitrosoarene, which was generated in situ by
the addition of the first equivalent of Grignard reagent to the
oxygen of the nitro group followed by the rapid elimination/
decomposition of the O-alkenylated intermediate, could
undergo a facile [3,3]-sigmatropic rearrangement, followed
by an intramolecular nucleophilic addition and rearomatization

to furnish the final indole products (Scheme 1a). This
approach has been proven successful in a number of synthetic

applications involving a series of bioactive molecules.7e,10

While powerful, this method is inherently limited to substrates
which have to possess a substituent ortho to the nitro group of
the nitroarenes; otherwise, the reaction gives low or no yield of
the desired indole product. In addition, 3 equiv of the alkenyl
Grignard reagent and harsh conditions of low temperature
(−78 to −20 °C) are necessary. The products of the Bartoli
indole synthesis are restricted to 7-substituted indoles, and the
yields are usually moderate (less than 70%). If such a process
could be generalized for non-ortho-substituted nitroarene

Received: January 30, 2019
Revised: March 19, 2019
Published: March 26, 2019

Scheme 1. Proposed Indole Synthesis Inspired by the
Bartoli Reaction
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substrates, the scope of the potential applications could be
further expanded to a broader range of transformations.
Along this line and inspired by the Bartoli indole synthesis,

we surmised that the direct O-vinylation of arylhydroxylamines
4 would occur using highly reactive vinyliodonium salts 5 as
the vinylation reagent to form O-vinyl-N-arylhydroxylamines 6,
which would rapidly undergo a similar [3,3]-rearrangement/
cyclization/rearomatization to afford indole products 7
(Scheme 1b). This approach utilizes N-protected arylhydroxyl-
amines, which are readily prepared from nitroarenes,11 as
substrates to undergo a copper-catalyzed cross-coupling
reaction12 with vinyliodonium salts. Vinyliodonium salts are
an environmentally benign electrophilic vinylation reagent with
low toxicity, high reactivity, and moisture and air stability.13

However, in comparison to the diverse utility of analogous
diaryliodonium salts14 in organic synthesis, vinyliodonium salts
have been much less explored.
Initially, we chose N-Boc-phenylhydroxylamine (4a) and

(E)-phenyl(styryl)iodonium trifluoromethanesulfonate (5a) as
model substrates to optimize the reaction conditions (selected
results are summarized in Table 1 and detailed optimization

results are summarized in the Supporting Information).
Without the employment of catalyst, the reaction did not
occur (Table 1, entries 1 and 2). The screening of copper salt
catalysts revealed that CuBr was an efficient catalyst to afford a
50% yield of the desired indole product in the presence of
Na2CO3 (Table 1, entries 3−7). Various bases (K2CO3,
Cs2CO3, DTBP) were also tested, and no higher yields were
provided (Table 1, entries 8−10). To our delight, when (E)-
styryl(o-tolyl)iodonium trifluoromethanesulfonate (5b) was
used as the vinylation reagent, a higher yield was afforded
(Table 1, entry 11). Further optimization screening showed

that increasing the loading of iodonium salt 5b had a positive
effect on the reaction (Table 1, entries 12 and 13). The results
revealed that 2.0 equiv of 5b, 1.2 equiv of Na2CO3, and 10 mol
% CuBr in DCE at 25 °C were optimal conditions (Table 1,
entry 14).
With the optimized conditions in hand, we next turned our

attention to assessing the scope and limitations of this
transformation. We were pleased to find that the copper-
catalyzed cascade O-vinylation15/rearrangement/cyclization
works across a broad range of arylhydroxylamines, providing
access to a diverse array of substituted indole motifs (Table 2).
We first explored the scope of the protecting group on the
nitrogen atom and found that the benzoyl group is the best
option to give a good yield of the desired indole product
(Table 2, entries 1−5). The variation of different substituents
at the para position of the phenyl group was then examined.
Both electron-withdrawing groups and electron-donating
groups can be well tolerated in this transformation to afford
the corresponding indole products in moderate to good yields
(Table 2, entries 6−14). It is noteworthy that the acetyl and 2-
thiophenyl groups are compatible with this reaction system
(Table 2, entries 15 and 16). Meanwhile, various ortho-
substituted arylhydroxylamines were amenable to the opti-
mized reaction conditions to generate 7-substituted indoles
(Table 2, entries 17−27). Notably, different disubstituted
aromatic rings, in particular, dihalide-substituted substrates,
were also well tolerated in this transformation (Table 2, entries
18, 20, and 25−27). Probably, the steric hindrance of the ortho
substituents has a negative effect on the efficiency of the
reaction and resulted in relatively lower yields in comparison to
the para-substituted substrates (Table 2, entries 6 vs 17, 7 vs
19, 10 vs 23). To our delight, a series of substrates with redox-
sensitive moieties, such as alkynes and olefins, can also be well
tolerated (Table 2, entries 28−30). When meta-substituted
arylhydroxylamines were used as substrates, low regioselectiv-
ities but good yields were observed (Table 2, entries 31 and
32). Furthermore, this methodology is applicable to more
complex aromatic rings, such as the naphthalene system (Table
2, entries 33−39) and dibenzofuran system (Table 2, entry
40); especially noteworthy are the excellent regioselectivities
and high isolated yields of benzoindoles when 2-substituted
naphthylhydroxylamines were employed as substrates (Table
2, entries 35−39). The structure of the product was
unambiguously confirmed by the single crystal X-ray diffraction
study of compound 7ai (Table 2, entry 35).16 However, this
method is not suitable to pyridine- and quinoline-containing
substrates, due to the favored coordination of nitrogen atom to
copper preventing the formation of the highly electrophilic
vinyl copper complex which was generated in situ between
vinyliodonium salts and the copper catalyst (Table 2, entries
41 and 42).
Further investigation with respect to the scope of vinyl-

iodonium salts was conducted (Table 3). As shown in Table 3,
these optimized conditions are amenable to a wide range of
alkenyliodonium triflates. Both electron-rich and electron-poor
styrenes (Table 3, entries 43−45) as well as alkylvinyl groups
(Table 3, entries 46−54) are efficiently transferred onto the
indole motif with good to excellent yields. Notably, 2,3-
disubstituted benzoindoles 7aac−aae can also be synthesized
in moderate yields employing (2,2-diphenylvinyl)(o-tolyl)-λ3-
iodany l t r ifluoromethanesu l fonate (5i) and (2-
methoxyphenyl)(2-phenylprop-1-en-1-yl)-λ3-iodanyl trifluoro-
methanesulfonate (5j) as electrophiles under standard

Table 1. Optimization of the Reaction Conditionsa

entry 5a/5b base catalyst yield of 7a, %b

1 5a Na2CO3 0
2 5a tBuOK 0
3 5a Na2CO3 Cu(OTf)2 0
4 5a Na2CO3 Cu(OAc)2 0
5 5a Na2CO3 CuI trace
6 5a Na2CO3 CuCl 34
7 5a Na2CO3 CuBr 50
8 5a K2CO3 CuBr 29
9 5a Cs2CO3 CuBr 34
10 5a DTBP CuBr 0
11 5b Na2CO3 CuBr 60
12c 5b Na2CO3 CuBr 64
13d 5b Na2CO3 CuBr 73
14e 5b Na2CO3 CuBr 78

aUnless otherwise noted, all reactions were carried out under the
following conditions: 4a (0.2 mmol), 5a or 5b (1.1 equiv), base (1.5
equiv), catalyst (10 mol %), DCE (1 mL) at 25 °C under N2 for 24 h.
Abbreviations: Boc = tert-butyloxycarbonyl; DCE = 1,2-dichloro-
ethane; DTBP = 2,6-di-tert-butylpyridine; Tf = trifluoromethanesul-
fonyl; Ac = acetyl. bYields of isolated products. c1.5 equiv of 5b was
employed. d2.0 equiv of 5b was employed. e1.2 equiv of base was
employed.
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conditions (Table 3, entries 55−57). The structure of the
product 7aac was also confirmed by the single-crystal structure,
which was analyzed by X-ray diffraction.16

To demonstrate the synthetic utility of this one-pot
(benzo)indole process on a multigram scale, we chose
naphthylhydroxylamine 4ai and vinyliodonium salts 5b,h as
substrates. We gratefully found that benzoindole 7ai,aaa were

afforded in 94% and 90% isolated yields with excellent
regioselectivities, respectively (Table 2, entry 35 and Table 3,
entry 53). This methodology can also be applied to the late-
stage functionalization of pharmaceutically relevant and
structurally complex intermediates, such as the estradiol
derivative 7aaf (Scheme 2, eq 1), the terpenoid derivative
7aag (Scheme 2, eq 2), and the cholesterol derivative 7aah
(Scheme 2, eq 3).
To further expand the synthetic applications of our indole

products, we wished to demonstrate that the products of this
reaction can be selectively manipulated to more complex
functional molecules17 (Scheme 3). For example, treatment of

Table 2. Substrate Scope of Arylhydroxylaminesa,b

aReaction conditions unless specified otherwise: 4 (0.2 mmol), 5b
(0.4 mmol), CuBr (10 mol %), Na2CO3 (0.24 mmol), DCE (1 mL)
at 25 °C under N2 for 24 h. Abbreviations: Cbz = benzoxycarbonyl;
Bz = benzoyl. bYields of isolated products. cAt 50 °C. dAt 70 °C. eAt
60 °C. fAt 35 °C. gThe regioselectivity was determined by 1H NMR
analysis of the crude reaction mixture; combined yield of the pure
regioisomers.

Table 3. Substrate Scope of Vinyliodonium Saltsa,b

aReaction conditions unless specified otherwise: 4 (0.2 mmol), 5 (0.4
mmol), CuBr (10 mol %), Na2CO3 (0.24 mmol), DCE (1 mL) at 35
°C under N2 for 24 h. bYields of isolated products. cAt 60 °C. dAt 50
°C.

Scheme 2. Late-Stage Functionalization of Pharmaceutically
Relevant Compounds
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3-phenyl-1H-indole (8a) or 1-butyl-3H-benzo[e]indole (8aaa)
with Cu(OTf)2 and methyl (E)-2-oxo-4-phenylbut-3-enoate
(9) or (E)-2-benzoyl-3-phenylacrylonitrile (11) led to 9H-
pyrrolo[1,2-a]indoles 1017a and 1217b in moderate to good
yields, respectively (Scheme 3, paths a and b). A Zn(OTf)2-
catalyzed Friedel−Crafts C2-alkylation reaction of 3-substi-
tuted indole 8ai with nitrostyrene as alkylating agent generated
C2-alkylated product 13 in 85% yield17c (Scheme 3, path c).
The C2 position of our indole products can be also readily
converted into other important building blocks via various
direct C2-functionalization reactions: for instance, bromina-
tion,17d trifluoromethylation,17e and formylation17f reactions
(Scheme 3, paths d−f). A TfOH-promoted umpolung
hydroarylation reaction of the indole 8aaa-Ac with anisole
was successfully accomplished to afford 17 in a good yield of
70%17g (Scheme 3, path g). Additionally, a palladium-catalyzed
dehydro-genative annulation of 3-aryl-substituted indole 8ai-
Me with 1,2-diphenylethyne was conducted to produce
dibenzo[c,g]carbazole 18 in good yield17h (Scheme 3, path h).
On the basis of our findings and the previous studies related

to the combination of copper catalysts and iodonium salts
which have been established by Gaunt,14a,c,e,g,18 MacMil-
lan,14d,f,h and others,13g,19 we proposed a reaction pathway
involving a vinyl−CuIII species (Scheme 4). We postulated that
CuBr will undergo chemoselective oxidative addition into the
vinyl−iodine bond to form the highly electrophilic alkenyl−
CuIII complex A rather than aryl−CuIII complex A′ because of
the ortho effect13n ,20 in the presence of vinyliodonium triflate
5. The complexation/nucleophilic attack of arylhydroxylamine

4 to alkenyl−CuIII complex A is expected to generate
intermediate B, which upon reductive elimination will afford
the O-vinyl-N-arylhydroxylamine C and reconstitute the active
CuBr catalyst to complete the catalytic cycle. O-vinyl-N-
arylhydroxylamine C will undergo a facile [3,3]-sigmatropic
rearrangement process, which is similar to the Bartoli indole
synthesis, followed by 1,3-proton migration/rearomatization to
furnish intermediate E. The intramolecular condensation
between aldehyde and amide will occur to generate iminium
intermediate F, and the final indole product 7 will be formed
by the 1,2-migration/dehydration/rearomatization of inter-
mediate F.
In summary, we have developed a highly efficient copper-

catalyzed tandem protocol for the synthesis of substituted
indoles and benzoindoles using readily available arylhydroxyl-
amines and vinyliodonium salts under mild conditions. This
transformation is tolerant to a broad range of functional groups
and provides ready access to a wide selection of indole
products in high yield and with excellent regioselectivity. In
addition, the indole products can be readily converted into
more complex functionalized indoles or polycyclic hetero-
cycles. We envision that this method will be instrumental for
the late-stage functionalization of bioactive compounds and
drug discovery. Further investigation and synthetic applications
are undergoing in our laboratory and will be reported in due
course.
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Scheme 3. Synthetic Applications of the Indole Productsa

aLegend: (a) 9, Cu(OTf)2, 1,4-dioxane, 70 °C, 12 h; (b) 11,
Cu(OTf)2, CH3CN, 35 °C, 36 h; (c) nitrostyrene, Zn(OTf)2, toluene,
80 °C, 12 h; (d) NBS, trifluorotoluene, 100 °C, 1 h; (e) TMSCF3,
PhI(OAc)2, BQ, K3PO4, CH3CN, 85 °C, 12 h; ( f) POCl3, DMF,
toluene, reflux, 42 h; (g) anisole, TfOH, CH2Cl2, 25 °C, 1.5 h; (h)
1,2-diphenylethyne, Pd(OAc)2, TBAB, Cu(OAc)2, DMF, 100 °C, 12
h. Abbreviations: NBS = N-bromosuccinimide, BQ = benzoquinone,
DMF = N,N-dimethylformamide, TBAB = tetrabutylammonium
bromide.

Scheme 4. Proposed Mechanism of the One-Pot Process for
Indole Synthesis
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